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Abstract. This paper describes the hardware, software, and operational
systems of ibis, a Japanese private team participating in RoboCup SSL.
Hardware optimization achieved a 39mm center of gravity, boosting ac-
celeration by 28%. The software utilizes a hierarchical Skill/Session archi-
tecture with RVO2-based path planning and real-time latency compen-
sation. Furthermore, a debugging "planning factor" and an LLM-based
explanation system were introduced. To ensure competition stability, a
referee network utilizing L3 switches and multicast routing is also pro-
posed.

1 Introduction

Team ibis is a private team of four working professional team members that
has participated in RoboCup since 2024. At the 2024 RoboCup Japan Open,
our first appearance, we received the Robotics Society of Japan Award, and at
the 2025 Japan Open we placed second among domestic teams. We participate
in all domestic scrimmages and publish an unofficial TDPs, making us one of
the most active working professional teams in Japan. Our robot achieves a very
low center of gravity (CoG) with optimized design, lowering the CoG to 39mm
and improving the allowable acceleration by approximately 28%. Regarding the
software, we adopted a hierarchical control architecture to enable flexible robot
control and coordination among multiple robots. Additionally, by introducing L3
switches into the referee network, enabling multicast routing, and blocking com-
munication between teams, we provided an environment where each team could
receive only referee packets. This Extended Team Description Paper (ETDP)
describes these contents.

2 Hardware Overview

2.1 Overview

The robot appearance is shown in Fig. 1, and its specifications are listed in the
table 1. While following a standard four-wheel omniwheel layout, the platform



Fig. 1. Overview of the Orion 2025B robot platform.

Table 1. Specifications of the robot

Item Specification
Robot version orion (2025 Rev. B)
Dimension ϕ178 x 90 mm
Weight 1.9 kg (without battery)
Motor MAD Motor EEE 4006 200 kV
Battery GAONENG 6cell 22.8 V 1550/1700/1850 mAh
Omni wheel ϕ56 mm
Omni wheel (Sub wheel) ϕ10 mm x 18 pcs x 2 layer
Kicker Straight / Chip
Main computer Raspberry Pi CM4
Main controller STM32G474
Sub controller STM32F303 x4
Camera 60 fps UVC camera FoV 160 deg
Motion sensor ADNS3080 mouse odom sensor
Ball sensor IR ball detector
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Fig. 2. Parallel-coil kicker layout.

adopts a direct-drive double-layer omniwheel, a parallel-coil kicking device, and a
low CoG design. In addition, it includes an onboard camera and a mouse sensor,
providing a configuration that considers future extensibility.

2.2 Low Center-of-Gravity, Low-Profile Chassis Design

In RoboCup SSL, the maximum robot envelope is constrained by the rules, and
the maximum acceleration is therefore limited by wheel friction and the CoG.
To improve locomotion performance, we optimized the overall hardware design
and lowered the CoG as much as possible.

1. The kicking device was designed with reference to the 2023 GreenTea de-
sign [1]; as shown in Fig. 2, coils are arranged in parallel to achieve a low
CoG and low profile.

2. The heavy battery significantly affects mounting orientation, therefore it was
mounted horizontally to lower the CoG as much as possible.

3. The power board is integrated with the battery box directly above the kicking
device. By minimizing structures in the thickness direction, the mounting
heights of the power board and battery are kept as low as possible.

4. The motor driver board, main board, and sub board are split and placed on
the left and right of the battery, resulting in a structure where only the top
plate exists above the battery.

With these low-CoG and low-profile design choices, the overall height of the
robot including the top plate is 90 mm, and the CoG height in CAD is 39 mm
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Table 2. Comparison of CoG heights.

Robot (state) CoG height
Orion 2025B (with battery) 39.0 mm
Orion 2025B (without battery) 36.0 mm
GreenTea 2024 [2] 47.0 mm
CompilationError 2024 [3] 51.0 mm
INPUT v2019 (drive unit only) [4] 49.2 mm
INPUT v2022 (drive unit only) [4] 39.7 mm

with battery and 36 mm without the battery. As shown in Table 2, while the SSL
robot has a CoG height of approximately 50 mm, our CoG is more than 20%
lower. In a 2D model, if the front and rear wheel contact points are located at
±50 mm from the vertical line through the CoG, the tipping-limit acceleration
is given by

amax = g · (50 mm/h) . (1)

For h = 50 mm, amax is 9.81 m/s2 (1.00 g), and for h = 39 mm, amax is
12.58 m/s2 (1.28 g). Thus, lowering the CoG to 39 mm increases the allowable
acceleration by about 28%.

2.3 Omniwheel

We use an omniwheel with 18 side rollers arranged in two layers. For the side-
roller grip, a high-friction silicone tube is used, and PTFE spacers serve as
bearings to balance low cost and low friction. The main wheel is 3D-printed,
and its shape prevents external impacts from directly affecting the side rollers,
improving durability.

2.4 Motor

For omniwheel drive, we adopted the MAD Motor 4006 200 kV drone motor. The
lightweight, high-output motor enables direct drive together with the two-layer
omniwheel within a limited chassis space where thickness tends to increase. A
magnet for a magnetic encoder is bonded to the motor shaft end, and an AS5047
magnetic encoder and a thermistor are mounted on the rear side to measure rotor
angle and temperature.

2.5 Dribbler

The dribbler is shown in Fig. 3. A compact design is achieved by using a small,
high-output brushless motor for Mini-Z RC cars. The roller diameter is 12 mm,
and the maximum roller speed is 15000 rpm at a 24 V supply. The damper
mechanism has a simple rotating structure. Since the impact from the front
is applied directly to the rotating shaft, the ball bearings would be damaged.
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Fig. 3. Dribbler mechanism.

Therefore, we adopted plain bearings to provide sufficient durability. Because
there was no space to add a return spring to the damper, a sponge is used to
return the dribbler to its nominal position.

2.6 Mouse Sensor

Wheel odometry is used to estimate the robot’s self-position. However, it has
too much slippage to be used for control, and errors are particularly noticeable
during acceleration and deceleration. Adding a dedicated measurement wheel
solely for odometry is difficult due to chassis space constraints. As an alternative,
we mounted an optical floor-tracking sensor based on a mouse sensor. At present,
it is used only for logging to evaluate tracking stability, and we plan to integrate
it into robot control in the future.

2.7 Front Camera

Near field edges, the SSL-Vision camera view can be occluded by the robot,
causing the ball to be hidden. In addition, the SSL-Vision system has a relatively
large latency of about 100 ms. To detect the ball with low latency and without
visibility issues, a camera is mounted on the robot. The onboard camera is
connected via USB to the Raspberry Pi CM4 on the main board, and it computes
the ball position and size (distance) and sends them to the host computer and
the robot control microcontroller.

2.8 Circuit Specifications and Design Philosophy

As shown in Fig. 4, the robot electronics are divided into five boards of four
types. Each board has its own microcontroller, and inter-board data is exchanged
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Fig. 4. Circuit block diagram of the robot electronics.

over CAN. Power connectors are unified to XT30, and CAN communication
uses DF13 connectors. The wiring harness is standardized, and extra expansion
connectors for daisy-chain connections are provided to allow future expansion.
Because boards are separated by function (robot control, dribbler control, power
control, and motor drive), a single board can be replaced when faults occur or
when extending functionality, which improves maintainability and development
speed.

2.8.1 Main Board

The main board integrates the STM32G474 main microcontroller for overall
robot control, the Raspberry Pi CM4 for communication with the host com-
puter and camera processing, and an IMU for yaw angle control. It also includes
switches for operation checks and debugging, as well as a push-button switch,
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enabling standalone verification of the motor, kick device, and dribbler without
external equipment.

2.8.2 Power Board

This board supplies power to the entire robot and includes charging and dis-
charging circuits for the kick device, along with protection functions. It uses an
STM32F303 microcontroller to monitor temperature, current, and voltage, shut-
ting down power in abnormal conditions and controlling charge and discharge
for the boost circuit. The boost circuit is a simple chopper configuration; by us-
ing high-performance SiC MOSFETs, it achieves more than 100 W output and
a charging time within 1 s. The discharge circuit uses three parallel Si FETs to
achieve both high voltage and current capability, allowing hard switching dur-
ing discharge. Two 450 V 680 uF electrolytic capacitors are installed. Because
higher-voltage capacitors tend to provide higher energy density, the design uses
a relatively high charging voltage. The maximum charging voltage is designed
as 450 V; however, failures occurred when charging to the maximum, and the
required output decreased after improvements to the kick device, so the current
charging voltage is 350 V.

2.8.3 Sub Board

The sub board carries the ball detection sensors and the dribbler motor ESC.
It uses an STM32F303 microcontroller to modulate the IR LEDs for the ball
detection sensors and to output PWM signals to the dribbler ESC. Some robots
also include an OLED display to show ball detection sensor values and battery
voltage. The ball detection sensors are redundant to improve fault tolerance, and
their detection positions are intentionally offset, enabling two-stage ball position
detection.

2.8.4 Motor Driver Board

This board drives two omniwheel motors per board, and two boards are
mounted on the left and right sides of the robot. Motor angle is measured by a
magnetic encoder mounted on the motor, and vector control is performed only in
the voltage domain. By limiting control to the voltage domain, current sensors
can be omitted, and two motors can be driven within the limited computational
budget of a low-cost microcontroller.

3 Software Architecture

Our software system "crane" utilizes a hierarchical control architecture to achieve
flexible robot control and coordination among multiple robots.

Fig. 5 shows the overall system architecture. The system receives and pro-
cesses information from external systems. SSL-Vision’s raw data (per-camera
positions with noise) is filtered and tracked by an external SSL-Vision Tracker,
which provides tracked data including velocity information. The World Model
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Fig. 5. Overview of the crane software architecture.

Publisher integrates this tracked data with referee information from SSL-Game-
Controller to build the world model. The Game Analyzer analyzes the game
situation, the Session Coordinator manages robot allocation, and control com-
mands are generated through the Skills layer with path planning and sent to
robots.

The control architecture is organized into two key layers: Skills and Sessions.

3.1 Skill and Session System

Multi-robot systems require addressing two distinct concerns: individual robot
behavior control and multi-robot coordination. To separate these concerns, crane
adopts a two-layer architecture consisting of Skills and Sessions, as shown in the
lower portion of Fig. 5.

A Skill is the basic unit of control for a single robot. Each Skill embeds a
finite state machine (FSM) to manage internal states and implements behavior
as a state transition system. For example, an Attacker skill may have states such
as APPROACH, RECEIVE, and SHOOT, transitioning between these states based on
ball position, distance to the ball, and other conditions. Skills can incorporate
other Skills as sub-components; for instance, the Attacker skill is composed of
multiple sub-skills including Kick, GoalKick, and Receive.
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A Session is a management unit for coordinating multiple robots. Sessions
receive the current world model (positions of robots and the ball, game state,
etc.) as input, and determine which Skill should be assigned to each robot and
which robot should execute which role.

This two-layer structure separates individual robot behavior logic from multi-
robot coordination logic, enabling independent development and testing of each
layer.

3.2 Obstacle Avoidance with RVO2

Previously, we used the A* algorithm for path planning. However, A* requires
field discretization, resulting in non-smooth paths, and struggles to handle dy-
namic obstacles within the control cycle. To achieve smooth obstacle avoidance
with better dynamic response, we transitioned to the Reciprocal Velocity Ob-
stacle (RVO) approach [5], shown as the RVO2 component in Fig. 5.

The RVO-based approach enables robots to avoid dynamic obstacles (par-
ticularly other robots) while maintaining smooth, oscillation-free trajectories.
Each robot independently computes collision-free velocities while implicitly ac-
counting for the reactive behavior of other agents. By operating in velocity space
rather than on discretized grids, RVO provides smooth, natural robot motion at
the 60 Hz control frequency.

Static constraints are handled separately before RVO computation. When a
robot’s intended target position would violate game rules—such as crossing the
field boundary or entering the opponent’s penalty area—the system computes
the nearest rule-compliant position along the path from the current position to
the original target. This adjusted position is then used to determine the preferred
velocity for RVO. Game-specific constraints, such as maintaining minimum dis-
tances from the ball during certain referee commands, are also enforced through
this preprocessing step. This separation of concerns allows RVO to focus on dy-
namic collision avoidance while ensuring that all static and rule-based constraints
are always satisfied.

3.3 Latency Compensation

SSL-Vision typically has a latency of about 100 ms, which corresponds to a 40 cm
position offset for a robot moving at a maximum speed of 4 m/s. Controlling
based on this outdated position degrades obstacle avoidance and ball handling
accuracy in the dynamic SSL environment.

To compensate for this latency, we transmit both the SSL-Vision-based robot
position and the measured SSL-Vision latency to each robot. Each robot accu-
mulates odometry data (from wheel encoders and IMU) in a ring buffer at a
2 ms cycle (500 Hz).

Upon receiving the SSL-Vision position, the robot integrates the accumulated
odometry over the latency period to estimate its current position. The corrected
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position is calculated as follows:

pcorrected = pvision +

N∑
i=0

vodom[i] · δt (2)

where N is the number of latency cycles, computed from the sum of host server
latency, elapsed time since the last SSL-Vision update, and elapsed time since
the last command reception; vodom[i] is the odometry velocity increment in the
global frame; and δt = 2 ms is the sampling period.

This corrected position is then sent back to crane on the host server, which
uses it for subsequent control commands. This method enables the control loop
to operate with near real-time state estimation, significantly reducing the effects
of SSL-Vision latency.

This approach provides an additional benefit. Because our robots are de-
signed with an extremely low profile, the markers can be occluded from the
SSL-Vision camera when approaching taller opponent robots, causing tempo-
rary loss of detection. This issue occurred at Japan Open 2025 and caused at
least one goal to be conceded. The position feedback from the robot side enabled
continued control even during such SSL-Vision occlusion situations.

4 Interpretability and Commentary

4.1 Overview

In the development and operation of complex multi-robot systems, making the
system’s decision-making processes understandable is crucial. We approach in-
terpretability from two perspectives: (1) developer-oriented debugging support,
and (2) spectator-oriented match commentary. The former enhances develop-
ment efficiency and supports root-cause analysis, while the latter increases the
educational and entertainment value of RoboCup SSL. This section describes
both approaches.

4.2 Interpretability for Developers: Decision Provenance Recording

To debug efficiently using logs, we must record not only commands but also why
each command was selected.

Inspired by Autoware’s Planning Factor [6], crane logs the decisions made
across the processing pipeline from higher layers (Sessions) to lower layers (Skills)
for each robot.

4.2.1 Self-Documenting Code with Planning Factors

State transitions and decision rationales in Skills are recorded using the
addPlanningFactor function. This function serves a dual purpose as both source
code comment and runtime log: it helps human readers understand runtime deci-
sions when reading the code, while simultaneously being logged for later analysis.

The following example illustrates this approach:
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Point Receive::calculateTargetPosition() {

Point closest = /* calculate intercept point */;

// Decision: Is robot close enough to target?

if (robot()->getDistance(closest) < 0.1) {

command->addPlanningFactor("Receive",

"Robot close to target, forcing closest policy");

return closest; // Early return

}

// ... continue with normal policy ...

}

Listing 1. Example of Planning Factor usage in the Receive skill.

In this example, when the robot is close enough to the target (within 0.1m),
the early return policy is selected and this decision is immediately recorded via
addPlanningFactor.

4.2.2 Debugging Utilization

Planning Factors are included in each robot’s command message and can be
monitored during execution. Critically, control commands and Planning Factors
are bundled in the same message. Each message contains: (1) control commands
(target velocity, kick power, dribble speed, etc.), (2) Planning Factors (Skill
names, states, decision rationales, etc.), and (3) robot position and velocity.

This design reveals why a particular command was generated. Commands
alone show only “what” the robot is doing, but Planning Factors reveal the
“why”: which state of the Attacker skill was active, which policy was selected,
and which conditional branches were taken.

When problematic behavior occurs, we can trace which decision led to the un-
expected command by inspecting the Planning Factors in the robot’s command
message. This enables both human debugging and allows LLM-based coding
assistants to investigate root causes in complex systems.

4.3 Commentary for Spectators: LLM-based Commentary System

RoboCup SSL matches are fast-paced and complex, making it difficult for spec-
tators to understand tactical decisions and robot coordination. Prior work on au-
tomated commentary for spectators includes TIGERs Mannheim’s AudioRef [7],
which uses template-based speech synthesis to announce match events. We aim
to generate more entertaining and natural commentary by leveraging LLM real-
time APIs.

As part of crane, we developed an LLM-based commentary system called
crane_commentary using the Gemini Multimodal Live API. Gemini’s native
audio output capability enables low-latency voice commentary generation.
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In reflex commentary mode, the system generates enthusiastic commentary
when critical events (goals, shots, saves, possession changes) occur, receiving
event triggers from crane’s event detection system via ROS2.

Analyst commentary mode activates during quiet periods (threshold: 5 sec-
onds). The system incorporates SSL rule knowledge and team profiles, and
through Function Calling, it actively retrieves match state, robot status, forma-
tion analysis, and recent highlights to provide context-aware tactical analysis.

5 Stable Operation of the Referee Network

The previous RoboCup SSL Referee Network, as shown in Fig. 6, was connected
on a single Layer 2 (L2) network. In this case, as shown in Fig. 6(a), there is a risk
that Referee software running on the local network could unintentionally flow
into the Referee Network. Furthermore, as shown in Fig. 6(b), packets intended
for robots could also end up connected on the same L2. Consequently, as seen in
Fig. 6(c), the team would receive not only packets from the Referee PC but also
packets from Team A and Team B. This not only congests the Referee Network’s
bandwidth but also prevents the normal reception of packets essential for the
competition, significantly impacting the match.

Ref

Team A

L2 Switch

Team B
Team CLocal 

referee packet

Robot packet(a) (b) (c)

• Referee packet from Ref PC
• Local referee packet from Team A
• Robot packet from Team B

Referee
packet

Vision 
packet

Vision

Fig. 6. RoboCup SSL previous Referee Network.(a) When a local referee packet is
accidentally sent to the referee network (b) When the router connecting to the robot
is directly connected to the referee network (c) When receiving packets from another
team

12



Ref

Team A

L3 Switch

Team B
Team CLocal

referee packet

(a) (b) (c)

Receive referee packets 
only from the referee PC

Referee
packet

Vision
packet

Vision

Broadband router, 
L2 Switch 

Referee multicast packet

Robot packet

Block Block

InternetInternet 
packet

Fig. 7. Proposed RoboCup SSL Referee Network

To resolve this issue, an L3 switch was added as shown in the network dia-
gram in Fig. 7. On the L3 switch, we configured multicast routing rules using
Protocol-Independent Multicast Sparse Mode (PIM-SM). The rendezvous point
(RP) in PIM-SM was set to the IP address of the broadband router prepared
for the referee. Additionally, we set up a port-based Virtual Local Area Net-
work (VLAN) for each team. As a result, each team sends Join messages to the
RP, enabling multicast packets to be distributed from the RP. Furthermore, the
network between teams is configured to be isolated, allowing only connections
to the referee network. Therefore, even if a local referee packet is accidentally
transmitted (as in (a)), or a robot packet is transmitted onto the referee network
(as in (b)), the packet is discarded at the L3 switch and cannot be received by
other teams (as in (c)). As a result, each team receives only the packets necessary
for the competition, while also reducing bandwidth pressure. Furthermore, the
broadband router prepared for the referee allows Network Address Translation
(NAT) only for the referee PC, ensuring only the referee PC can connect to the
Internet.

By adding an L3 switch, network latency due to packet distribution is ex-
pected. However, this delay is only a few milliseconds, significantly smaller than
SSL-Vision’s delay, and its impact is considered negligible. More importantly,
only packets essential for the competition are distributed to each team, enabling
a stable network environment. During SSL practice sessions in Japan, we tested
the network shown in Fig. 7 and confirmed it functions without issues. On the
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other hand, each team must take care not to transmit local referee packets or
robot control packets onto the referee network. A simple solution can be achieved
by separating the network card (NIC) that receives referee packets, and the NIC
that sends and receives robot control packets. Each team is required to commu-
nicate using this method.

6 Conclusion

In this paper, we introduced our robot, software, and operation tools, and sum-
marized our hardware optimization focusing on lowering the center of gravity,
improving debugging efficiency by collecting logs and recording decisions during
operation, and the design and verification of a tournament operation network
for RoboCup 2026 Japan Open. In the future, we will continue to improve con-
trol using onboard sensors and expand the operation tools to further improve
stability and reproducibility in a competitive environment.
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